Glaucoma Now is a continuing medical education publication hosted by Glaucoma Australia Inc. Distributed worldwide, our goal is to educate and update general ophthalmologists, glaucoma specialists and ophthalmology residents. International leaders in the field of glaucoma are invited to contribute to the program, sharing the most recent insights.

Supported by an unrestricted educational grant, the publication is non-promotional and has a fully independent Editorial Board.

For each issue CME credits can be obtained by registering on our website www.glaucoma.org.au and answering the uploaded questions.

A newsletter is sent out to participants registered to the program.

Glaucoma Now is published and administrated by the editorial board and funded by Novartis Pharmaceuticals Australia P/L.

Copyright 2010 Editorial Board.

All rights reserved. No responsibility assumed for injury or damage to persons or property arising from the use of information or ideas contained in this publication.

Editorial Manager of Glaucoma Now Program hosted by Glaucoma Australia: Patricia Buchholz RPh, PhD, Karlsruhe, Germany.

Medical Responsible for CME accreditation: Andreas Buchholz MD, PhD, ROpH, Karlsruhe, Germany.

Production by Glaucoma Australia Inc.
Core Concepts

Glaucoma is unique among chronic diseases in that its primary risk factor and therapeutic target (IOP) is measured only a few times a year in most patients.

Goldmann tonometry (GAT) is the most widely-used method of tonometry worldwide and is generally regarded as a “gold standard” – but even under ideal conditions GAT has a reproducibility (precision) of only ±2.5 mmHg.

Central Corneal Thickness (CCT) is a major confounder of GAT accuracy but ‘correction’ formulae and nomograms should not be used to ‘correct’ GAT measurements for individual patients, even when available in electronic health records.

The material properties of the cornea play an important role in GAT error and likely dwarf the influence of CCT. Corneal Hysteresis (CH) can only be measured by the Ocular Response Analyzer (ORA) but a compelling body of data suggest low CH is a powerful risk factor for glaucoma and progression.

Home tonometry is emerging as another tool in the management of glaucoma.

Implantable or wearable devices that measure IOP continuously will supplant our office-based ‘snapshots’ of IOP. How we analyze the coming deluge of IOP data from these devices will be a crucial challenge in the coming decades.

1. Introduction

Measurements acquired during clinical care are always an estimate.1 Without acquiring numerous measurements to average out clinical noise while also understanding and accounting for technical limitations, we can never begin to approach the true underlying value of a physiological measurement. Nowhere is this more relevant than in the measurement of intraocular pressure (IOP) in the care of patients with glaucoma. Among chronic diseases, glaucoma is remarkable in that its primary risk factor and therapeutic target, IOP, is measured only rarely and randomly, perhaps just a few times a year in most patients. Although this remains true in 2020, we’re now seeing progress with home tonometry, short-term continuous IOP monitoring and even implantable devices, all of which portend a paradigm shift in how we understand and manage glaucoma.

The purpose of this brief review is to update the reader on how tonometry continues to evolve, focusing on the often under-appreciated limitations of current techniques, how the material properties of the eye (and especially the cornea) may provide clues to glaucoma pathophysiology and finally, how home tonometry and continuous tonometry will change how we care for glaucoma patients.

2. Goldmann Applanation Tonometry

Goldmann applanation tonometry (GAT) rapidly gained widespread acceptance after its introduction in the 1950s. The device was reasonably priced, and the technique was based on easily understood physical principles. GAT fit seamlessly into the workflow of the slit lamp examination and appeared to provide accurate reproducible measurements. GAT arrives at an estimate of IOP based on the force needed to flatten the corneal apex to a given area. A flattened area with a diameter of 3.06 mm was chosen empirically to offset the surface tension of the tear film (which tends to draw the tonometer tip towards the eye) and both corneal and ocular rigidity (which resistplanation, independent of IOP). Goldmann tonometry’s status as a “gold standard” went largely unchallenged for 50 years, even though Goldmann and Schmidt acknowledged several limitations to their device.2 In particular, they acknowledged that their design assumptions were based on a CCT of 0.5 mm (500 µm) and that the accuracy of their device would vary if CCT deviated from this value.

In 1975, Ehlers cannulated 29 otherwise normal eyes undergoing cataract surgery and correlated corneal thickness with errors in GAT.3 He found that GAT most accurately reflected the true intracameral IOP when CCT was 520 µm and that deviations from this value resulted in an over or under estimation of IOP by as much as 7 mmHg per 100 µm. Subsequent cannulation experiments performed on many more patients with modern pressure transducers have confirmed Ehlers’ basic findings. We now know that CCT varies far more among otherwise normal individuals than Professor Goldmann ever dreamed. Differences in CCT are seen among different racial and ethnic groups4 and likely lead to misclassification of patients with normal tension glaucoma5 and ocular hypertension.6,6 The importance of CCT in the management of glaucoma patients, particularly those with ocular hypertension, was brought to the forefront in 2002 by the findings of the Ocular Hypertension Treatment Study (OHTS). In the OHTS, CCT was measured in participants about 2 years after enrollment was completed. In a multivariate model of those baseline characteristics predictive of which subjects would go on to develop visual field or optic nerve changes attributable to glaucoma after five years, CCT proved to be the most potent.6 The interested reader should go to the OHTS website (http://ohts.wustl.edu/risk/index.html) for versions of the predictive model to use in direct patient care.
The OHTS results and subsequent confirmatory studies suggest that many patients are mis-classified in terms of glaucoma risk based on erroneous IOP estimates by GAT. Clearly, many individuals with elevated GAT measurements but no other findings suggestive of glaucoma probably have normal ‘true’ IOPs and do not need treatment or even increased glaucoma surveillance. CCT measurements in patients with diagnosed glaucoma also appear useful. Following the OHTS publications, numerous investigators explored the role of CCT in patients with existing glaucoma, and they have generally found CCT to have a significant impact in these patients as well.

A number of so-called ‘correction nomograms’ employ data acquired by cannulation during cataract surgery and attempt to ‘correct’ GAT measurements based on CCT. In the linear regression analyses generated by such cannulation experiments, just as many data points lie above the regression line as below; the data points above the line need to be ‘corrected’ downwards, those below ‘corrected’ upwards. In attempting to correct GAT measurements acquired in an individual patient using a fixed, linear correction nomogram, the ophthalmologist can thus be wrong both in magnitude and direction of the adjustment. A thick cornea gives rise to a greater probability of an IOP being overestimated (or in the case of a thin cornea, of IOP being underestimated) but the extent of measurement error in individual patients cannot be determined from CCT alone. To add yet another layer of complexity, as actual IOP increases, both the cornea and sclera become stiffer – thus the relationship between GAT, CCT and ‘true’ IOP varies across a range of IOPs in the same patient.

No generalized ‘correction nomogram’ can ever adequately adjust IOP without knowing much more about the individual cornea being applanated. This was driven home recently by Wachtel and colleagues who used the Pascal Dynamic Contour Tonometer (DCT) as the reference standard believed to be closest to the “true” IOP short of cannulating an eye (see below); they compared DCT to conventional GAT and to “adjusted” GAT measurements at various stages of glaucoma. They found that GAT measurements become increasingly discordant from DCT measurements as glaucoma advances, especially in older patients with thinner corneas. Application of published “correction” nomograms to the GAT data worsened this discordance and resulted in more unpredictable errors.

Remember that the definitions of ‘accuracy’ and ‘precision’ are different, though the terms are often used interchangeably. In the present context, ‘accuracy’ reflects how closely tonometer measurements reflect the ‘true’ IOP (e.g., what you would measure were you to cannulate the eye with a manometer), whereas ‘precision’ refers to the consistency and repeatability of the measurements. CCT can be measured with micron level precision, whereas even in the best of hands GAT has a variance of ±2.5 mmHg. Attempts to ‘correct’ an imprecise measurement (GAT) with a precise measurement (pachymetry) cannot and does not lead to a more ‘accurate’ IOP estimate. Clinicians should avoid using these correction nomograms in the care of individual patients, even though pachymeter and electronic health record vendors make it easy to do the math with a button or mouse click.

3. Material properties

The OHTS CCT findings ignited interest in studying the eye from an engineering perspective. Might the material properties of ocular structures provide clues to how evolution has designed eyes to protect ganglion cell axons at the optic nerve head? Relevant to our discussion is how the material properties of the cornea influence tonometry techniques. The cornea is a far more complex structure than a piece of plastic or steel in which thickness has a straightforward linear relationship with stiffness. The cornea is a living viscoelastic biological structure that responds dynamically to deformation, whether by the tip of a tonometer or an air puff. Mathematical models have repeatedly demonstrated that the influence of CCT on GAT measurements is but a small component of GAT error – factors such as ocular rigidity, viscoelastic properties hydration state and age all interact with CCT. To add further complexity, material properties change with different ‘true’ IOP.

If we could measure material properties, might we gain a more accurate estimate of IOP in our patients?

4. The Ocular Response Analyzer (ORA) and Corneal Hysteresis (CH)

The Ocular Response Analyzer (Figure 1; Reichert Instruments, Depew, NY USA) is a modern non-contact tonometer (NCT) designed to not only measure IOP but also to measure and account for variability in corneal biomechanical properties in individual eyes. Like other NCTs, a pulse of compressed air flattens the corneal apex and electro-optical sensors measure the physical behavior of the cornea. Unlike conventional NCTs, the ORA measures both the inward and outward movement of the cornea. The cornea is not a purely elastic but rather a visco-elastic structure – it deforms and then returns to its original shape at different velocities. In other words, it does not behave like a spring but rather as a viscous damping system (e.g., a hydraulic shock absorber). This behavior, termed hysteresis, is a well-studied physical property of biological structures such as joints and blood vessels. The ORA is the first clinical device to measure corneal hysteresis (CH) in the living eye. In longitudinal studies, low CH values appear to be a significant risk factor for the development of glaucoma and are associated with visual field progression. Linking corneal measurements to the optic nerve, CH appears related to behavior of the lamina cribrosa over time.

The ORA software combines CH and corneal response factor (CRF; a measure of the cornea’s elastic response) to derive a corneal-corrected IOP (IOPcc). A recent longitudinal study demonstrated that IOPcc was more predictive of rates of visual field loss obtained by GAT or rebound tonometry.

5. CATS™ Prism

If a clinician cannot afford to purchase an ORA, might there be a way to account for material properties in individual patients using existing technology? GAT has employed a flat applanation surface for over 50 years. McCaffer-ty and colleagues used finite element
use in clinic with any but the most cooperative patients and has not gained widespread adoption. It remains a useful research tool.

7. Rebound (iCare™) Tonometry

First described by its inventor Kontiola in 1996, rebound tonometry uses a solenoid to accelerate a magnetized probe onto the cornea at a fixed velocity; the same solenoid then detects the corneal impact and rebounding velocity of the probe. Clinical trials of the commercialized devices (iCare Finland Oy, Vantaa, Finland) support sufficient correlation with GAT for clinical use. This portable device does not require topical anesthesia and is well tolerated by young children and uncooperative patients. The device generally over-estimates the IOP when compared to Goldman tonometry, especially at higher IOPs and this effect is amplified at increased CCTs.

The iCare tonometer has seen widespread adoption as a screening tool; it is particularly useful in young children.

8. Dynamic Contour Tonometry

Dynamic contour tonometry (Pascal DCT; Ziemer Ophthalmic Systems AG, Port, Switzerland) employs a contoured tip with an embedded piezoelectric sensor; it measures IOP directly via hydrostatic coupling. IOP estimates acquired by DCT compare favorably to cannulated IOP in vivo, and appear to be mostly unaffected by CCT or prior corneal surgery. DCT is more repeatable and reproducible than GAT and ORA. The device is challenging to modeling to modify the applanating surface of a Goldmann prism in order to minimize errors due to corneal stiffness, curvature and tear film. Their models predicted this approach would reduce GAT error by 50%. A randomized clinical trial recently demonstrated that the correcting applanation tonometry surface (CATS) tonometer prism (CATS Tonometer LLC, Tucson AZ, USA) significantly reduced the influence of both CCT and CH on IOP estimates acquired by GAT, simply by replacing the standard flat prism with the CATS prism (Figure 2).

6. Dynamic Contour Tonometry

Dynamic contour tonometry (Pascal DCT; Ziemer Ophthalmic Systems AG, Port, Switzerland) employs a contoured tip with an embedded piezoelectric sensor; it measures IOP directly via hydrostatic coupling. IOP estimates acquired by DCT compare favorably to cannulated IOP in vivo, and appear to be mostly unaffected by CCT or prior corneal surgery. DCT is more repeatable and reproducible than GAT and ORA. The device is challenging to use in clinic with any but the most cooperative patients and has not gained widespread adoption. It remains a useful research tool.

7. Rebound (iCare™) Tonometry

First described by its inventor Kontiola in 1996, rebound tonometry uses a solenoid to accelerate a magnetized probe onto the cornea at a fixed velocity; the same solenoid then detects the corneal impact and rebounding velocity of the probe. Clinical trials of the commercialized devices (iCare Finland Oy, Vantaa, Finland) support sufficient correlation with GAT for clinical use. This portable device does not require topical anesthesia and is well tolerated by young children and uncooperative patients. The device generally over-estimates the IOP when compared to Goldman tonometry, especially at higher IOPs and this effect is amplified at increased CCTs.

The iCare tonometer has seen widespread adoption as a screening tool; it is particularly useful in young children. An Ophthalmic Technology Assessment by the American Academy of Ophthalmology suggested that rebound tonometry was sufficiently accurate to avoid the need for general anesthesia in many children. Rebound tonometry lends itself nicely to home tonometry, and a device to do so (the iCare™ ONE) has been commercialized. The device appears to have reasonable comparability to both GAT and rebound measurements by a physician.

8. 24 Hour Continuous IOP Measurement

To better understand glaucoma and guide its treatment, we need something analogous to the continuous, ambulatory monitoring of blood pressure and electrocardiogram that our internal medicine colleagues have employed for years. Progress towards that vision of glaucoma management is accelerating. The Triggerfish® contact lens sensor (Sensimed AG, Lausanne Switzerland) provides 24-hour measurements of corneal curvature presumed to be related to changes in IOP. The device appears to provide reproducible results and is generally well tolerated, even with overnight use while sleeping.

In contrast to an external, temporary, contact lens approach, the EyeMate IO (Implandata Ophthalmic Products GmbH, Hannover Germany) is designed to be implanted into the ciliary sulcus during cataract surgery and remain inside the eye permanently (Figure 3). The device can be wirelessly interrogated by an external probe. Twelve month results in a cohort of 22 patients were recently published; the device performed reliably through that first year without serious adverse events.

Implanted IOP sensors would seem particularly useful in eyes with the Boston Keratoprosthesis in which no conventional technique of tonometry is reliable. A preliminary series of 12 such eyes demonstrated that the EyeMate-IO could identify postoperative IOP spikes and longitudinal increase of IOP over time and correlated well with clinical (tactile) estimates of IOP.

As technology and miniaturization progress in coming years, implanted sensors will play a growing role in our
The left panel shows the first-generation EYEMATE-IO sensor design with a uniform thickness of 0.9mm and sharp edges, which caused mechanical problems during the first series of implantations. The second-generation design used in this study is shown in the right panel. It is significantly thinner at 0.5mm with rounded edges tapered to 0.1mm and features 4 haptics to prevent unwanted motion in the sulcus.

The left panel shows the correct positioning of the EYEMATE-IO sensor in an eye with medically induced mydriasis 1 week after surgery (patient DE_01_001). In maximal dilation, the inner edge of the sensor is visible. The right panel shows the same patient 3 months after surgery. The sensor ring is only visible through an iridectomy placed during a previous trabeculectomy several years before sensor implantation. There are mild defects to the pigment layer of the iris that were first seen directly after surgery and did not change over the course of the study.

Figure 3: “Telemetric Measurement of Intraocular Pressure via an Implantable Pressure Sensor – 12-month results from the ARGOS-02 Study”.

Figure 2: Correcting applanation tonometry surface tonometer prism (CATS™; Reichert Instruments, Depew, NY), Image courtesy of Reichert.
management of glaucoma. It is easy to predict the integration of IOP sensors into intraocular lenses or glaucoma drainage devices quite soon. The challenge will come as we begin to deal with the deluge of data generated by these devices. What aspect of this data will prove most useful and predictive in clinical management? Average IOP over hours, days or weeks? IOP variability? If so, on what time scale? What about the other side of the pressure equation affecting the optic nerve head, intracranial pressure?20

As we move from managing glaucoma using random, snapshot measurements of IOP to a future in which we our computers or electronic health records can ingest massive IOP data from individual patients, software-based analytics will become a key enabling technology to help us in our clinics and offices. It will be a challenging but exciting transition.

References

Two new drug classes have become commercially available in the last few years: rho kinase inhibitors and nitric oxide donators, both facilitating aqueous humor outflow via the trabecular meshwork – Schlemm’s canal – distal conventional outflow pathway.\(^5,6\)

Actomyosin contractility can be inhibited by the Rho kinase (RK) and myosin light-chain kinase (MLCK) pathways. Preventing phosphorylation and activation of the myosin light chain leads to degeneration of focal contacts (actin microfilaments and vinculin-rich cell-ECM junctions) and ultimately to expansion of the juxtanacanaliculi connective tissue JCT and dilation of SC leading to degeneration of focal contacts (actin microfilaments and vinculin-rich cell-ECM junctions) and ultimately to expansion of the juxtanacanaliculi connective tissue JCT and dilation of SC.

1. Introduction

Enhancing outflow, through trabecular, uveoscleral and subconjunctival pathways, is a mainstay in glaucoma management. Treatment options include: medications, typically eye drops, to help fluid drain more effectively or lessen fluid production; laser surgery; minimally invasive glaucoma surgery (MIGS); and conventional surgery.

2. Medical therapy

Trabecular meshwork/Schlemm’s canal inner wall (TM/SCIW) cellular relaxation/contractility and cell- extracellular matrix (ECM)/cell-cell adherens junction formation/degradation may be the effenter arms\(^1\) of an IOP-regulating mechanosensitivity reflex. Intraocular pressure (IOP), shear stress, various hormones and cytokines may be the adherent arms; endothelial nitric oxide synthase (eNOS) – NO may be a signaling arm.\(^2\) Carreon and Johnstone have provided excellent descriptions of the movements of the system at the macro level.\(^3,4\)

What’s New:
Natural and created outflow pathways in medical and surgical glaucoma treatment: trabecular, uveoscleral and subconjunctival
Paul L Kaufman M.D. and Carol A Rasmussen M.S.
Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, USA

Core Concepts

- Medical therapy – new drugs
- Drug delivery
- Conventional and unconventional outflow
- Lymphatic and distal conventional outflow
- Gene and stem cell therapy
- Laser treatment
- MIGS devices

1. Introduction

Enhancing outflow, through trabecular, uveoscleral and subconjunctival pathways, is a mainstay in glaucoma management. Treatment options include: medications, typically eye drops, to help fluid drain more effectively or lessen fluid production; laser surgery; minimally invasive glaucoma surgery (MIGS); and conventional surgery.

2. Medical therapy

Trabecular meshwork/Schlemm’s canal inner wall (TM/SCIW) cellular relaxation/contractility and cell- extracellular matrix (ECM)/cell-cell adherens junction formation/degradation may be the effenter arms\(^1\) of an IOP-regulating mechanosensitivity reflex. Intraocular pressure (IOP), shear stress, various hormones and cytokines may be the adherent arms; endothelial nitric oxide synthase (eNOS) – NO may be a signaling arm.\(^2\) Carreon and Johnstone have provided excellent descriptions of the movements of the system at the macro level.\(^3,4\)
Drug / viral vector gene delivery via injection into the anterior chamber (A, B) or catheterization of Schlemm's Canal in live monkeys (C, D).

A: Monkey anterior chamber angle. Arrow points to blood-filled Schlemm's canal.

B: Monkey chamber angle after intracameral administration of scAAV.GFP vector, day 641 post injection. Green fluorescence from trabecular meshwork. No inflammation, IOP normal.

C: Microcatheter in Schlemm's canal (arrow) showing trypan blue in Schlemm's canal after injection via catheter.*, aqueous veins carrying trypan blue-tinged aqueous humor from the canal

D: Microcatheter in Schlemm's canal (arrow pointing to catheter tip), showing trypan blue in Schlemm's canal after injection via catheter.

Figure 2
in September 2018. The product was launched in November 2018 in Japan.
OMDI received marketing approval in Korea in December 2019. Sepetaprost
(DE-126/STN10126, Santen Pharmaceuticals), is an FP- and EP3 receptor
dual agonist. Targeting EP3 receptors in the TM and ciliary muscle may facilitate
outflow of aqueous humor through the TM pathway (although this seems
counter-intuitive to the EP3 TM-stiffening effects described above) in addition
to the uveoscleral pathway, for an additive effect to lower IOP.

2.1 Novel therapeutic strategies

Gene and stem cell therapy

Gene therapy centered on enhancing aqueous outflow or inhibiting aqueous
inflow (i.e., aqueous formation), by up- or down-regulating a normal physiological
mechanism, rather than replacing a defective gene, is in development. Gene
constructs can be delivered intracameral, intravitreally, or directly into
Schlemm’s canal. (Figure 2)

Stem cell strategies for the TM/SCIW are attractive for the same reason as
gene therapy: the potential to provide patients with one-time long-term solutions. Stem cell approaches aim to replace or regenerate lost tissue in the
conventional outflow pathways, restoring normal function.

Drug delivery – intracameral, supracil-
liary and suprachoroidal

Durysta®, (Allergan), a bimatoprost
intracameral biodegradable implant
injected transconcurrently via a 30-gauge
needle, coming to rest in the inferior
chamber angle, releases the drug at a constant rate as it slowly degrades and
eventually disappears. It reduces IOP
at least as much as topical bimatoprost
for at least several months. It is now approved and on the market in the USA.
Allergan has five ongoing Phase III studies with Durysta to support further potential FDA label enhancement and rest of the world approvals. The
implant is designed to reduce IOP for 4
to 6 months, though some patients have
experienced sustained IOP lowering for
longer than 6 months, without requiring additional treatment.

Interest is growing in targeted delivery to the suprachoroidal / supraciliary spaces. Modifying the properties of a drug formulation (e.g. using hydrogels or increasing viscosity) can result in diffuse or focal patterns of dispersion.

Greater drug exposure to anterior segment eye tissues can be achieved with supraciliary delivery, where a microneedle or a regular needle is used to penetrate just beyond the sclera, with the drug deposition occurring above the ciliary body.11

2.2 Drainage pathways

Lymphatic drainage

The presence of lymphatic drainage channels coursing through the ciliary
muscle in human, sheep and rodent eyes, was demonstrated using a variety of
imaging techniques.12-13 Mice treated with latanoprost had increased lymphatic drainage from the eye documented by using hyperspectral imaging at
multiple times following topical application of latanoprost and intracameral injection of quantum dots as a tracer.13

A recent study demonstrated that lymphatic drainage from the eye was significantly reduced in older eyes.13 It may be that impaired lymphatic clearance of aqueous humor, proteins and antigens from the eye plays a role in age-related diseases of the eye such as glaucoma and inflammatory eye disease. This outflow pathway may be a new target for glaucoma therapeutics.

‘Distal’ Conventional Outflow Pathway

The labyrinth of intrascleral vessels connecting Schlemm’s canal and the
espiscleral veins was identified and beautifully shown by castings nearly 75
years ago, but their complex anatomy and physiology was poorly understood.

Virtually nothing was known about their putative pathophysiology, if any.
Recent studies have shown that the collector channels emanating from the outer
wall of Schlemm’s canal may have contractile and perhaps sphincter-like properties,14 and even more distal intrasceleral venules may have a contractile apparatus, so that resistance in this pathway under some conditions may be higher than previously thought.14,15 Recent advances and future developments in optical coherence tomographic (OCT) imaging and angiography may help unravel their physiologic and pharmacologic properties and possible regulatory role for aqueous outflow.

Subconjunctival drainage

Various shunting devices that completely bypass the sclera and drain aqueous humor from the anterior chamber to various iterations of subconjunctival or sub-Tenon’s equatorially placed plates were introduced ~50 years ago, and are constantly evolving. Most recently, smaller shunt devices that drain to the perilimbal subconjunctival space have been introduced (DE-128 Glaucoma MicroShunt, Xen Gel Implant, Express Miniature Glaucoma Shunt, etc. (see below))

3. Non-medical strategies

3.1 Laser treatment

Laser therapy targets the trabecular meshwork / inner wall of Schlemm’s canal. (Figure 3)

Selective laser trabeculoplasty (SLT) is currently preferred over argon laser trabeculoplasty (ALT). Due to the longer wave length, larger spot size, and localization of the damage to only pigmented cells, there is less tissue damage and scarring, and re-treatment is better-tolerated and more effective. SLT frees patients from having to use eye drops and its efficacy is comparable to the individual medical mainstays, e.g., timolol, latanoprost. Recent studies indicate that laser treatment is as effective as medication for first-line therapy in patients with glaucoma and ocular hypertension.19

3.2 Minimally Invasive Glaucoma Surgery (MIGS)

Bypassing TM and SCIWE, i.e., establishing a conduit between the anterior chamber and the lumen of SC, bypassing TM/SCIWE resistance. A first principle is that such resistance is likely segmental, so that one ‘hole’ in the system does not remove the resistance over the entire circumference.20 Examples are the Glaukos iStent (simple shunt), Ivantis Hydrus Microstent (also dilates / splints SC). (Figure 4)
A: Argon laser trabeculoplasty (ALT) spot size (left arrow) versus selective laser trabeculoplasty (SLT) spot size (right arrow). B, C: Scanning electron microscopy (SEM) after argon laser trabeculoplasty (B) reveals crater formation and disruption of the ropelike components of the trabecular meshwork. SEM after selective laser trabeculoplasty (C) shows intact trabecular meshwork beams.

Figure 3

Artistic rendering of the main MIGS devices

Figure 4
Catheterizing and dilating Schlemm’s canal by injecting visco-elastic material, to dilate and ‘revitalize’ the canal (viscodilation) and enhance outflow (perhaps by establishing long-lasting micro-perforations/channels between SC/IWE cells, allowing low-resistance flow pathways between the JCT and the SC/IW), such as Ellex iTrack Microcatheter for ab-interno canoloplasty (ABiC), Sight Sciences Visco 360 Viscosurgical System.

Disrupting/ablating/removing the trabecular meshwork and SC/IWE can be achieved by creating unimpeded access for aqueous flow from the anterior chamber to the lumen of Schlemm’s canal.

Goniocopy-assisted translimbal trabeculotomy (GATT) involves incising the SC/IW and cannulating SC with a polypropylene suture or a microcatheter and passing it 360 degrees around SC, and then pulling the ends to disrupt the entire TM and SC/IW. Ablation of the entire SC/IW and TM can be performed over 360 degrees electrically (Trabectome, Neomedix), or manually/mechanically over a portion of the circumference (Kahook dual blade, New World Medical).

Completely bypassing the conventional and uveoscleral pathways; i.e., shunting aqueous from the anterior chamber directly to the subconjunctival space – Ex-PRESS Mini Glaucoma Shunt, ab externo, Alcon/Option; DE-128 Glaucoma MicroShunt, Santen/InnFocus, ab externo, recently notified of FDA acceptance of premarket approval (PMA) application; Xen Gel Implant, ab interno, Allergan; CyPass Microstent, ab externo, Allergan; CyPass Microstent, ab externo, recently notified of FDA action; Xen Gel Implant, ab interno, recently notified of FDA action; Xen Gel Implant, ab interno, recently notified of FDA action.

References

The importance of Glaucoma and Obstructive Sleep Apnea Syndrome?

Robert Ritch, MD
Einhorn Clinical Research Center, New York Eye and Ear Infirmary, New York, NY, USA

Core Concepts

Relatively common, increasingly recognized but still far under-diagnosed, Obstructive Sleep Apnea Syndrome (OSAS) sufferers experience apneic and hypopneic episodes during sleep.

OSAS symptoms include daytime fatigue, headaches, difficulty concentrating and memory problems.

OSAS has been correlated with glaucoma and is a risk factor for glaucoma progression, especially in normal-tension glaucoma (which is also underdiagnosed).

The severity of OSAS has been correlated with the extent of glaucomatous damage.

OSAS reduces ocular perfusion pressure (blood flow to the optic nerve), resulting in decreased oxygen supply (ischemia) and predisposes the eye to glaucomatous damage.

Continuous positive airway pressure (CPAP) - the most common treatment for OSAS - improves ocular blood flow and may stabilize glaucoma progression.

OSAS and systemic hypertension are associated with each other and CPAP treatment can lead to improvement in control and lowering of elevated blood pressure.

Obstructive Sleep Apnea Syndrome (OSAS) is a widely prevalent condition in which upper airway resistance is increased during sleep, primarily in the supine position, during which the elastic tissue of the airway narrows or collapses, resulting in disordered breathing. Sufferers experience repeated episodes of upper airway obstruction (apneic episodes – cessation of breathing for 10 seconds or more) or decreases in airflow (hypopneas) during sleep with varying severities. Hypopneas are of shorter duration than apneas.

When the first paper connecting OSAS and glaucoma was published in 2002, it was estimated that 4% of men and 2% of women had OSAS. It was largely unknown and unrecognized. The numbers have currently increased as much as ten-fold, which is staggering. OSAS is associated with numerous ocular and systemic disorders, and it is important for not only ophthalmologists, but other physicians as well.1

Both diagnosis and severity of OSAS can be made with formal polysomnography (PSG) or with a home sleep test. If a home sleep test is positive, then an overnight continuous positive airway pressure (CPAP) titration should be performed to determine whether and what treatment is necessary. This analyzes nasal airflow, respiratory effort and oxygen saturation. These variables determine an apnea-hypopnea index (AHI) and respiratory disturbance index (RDI). OSAS is defined as >5 AHI/hour, with severity graded as mild, moderate or severe.2

Symptoms of OSAS include daytime somnolence, headaches, difficulty concentrating and memory problems. Factors predisposing to OSAS are obesity, male gender, upper airway abnormalities (palate shape), large tongue, large tonsils, a shorter lower than upper jaw, snoring and enlarged neck thickness.2 Alcohol and sedatives worsen the symptoms. Most patients with OSAS do not remember waking in the night during an apnea-hypopnea episode. OSAS can affect the pulmonary, cardiovascular and cerebrovascular systems (Table 1).4 The Joint National Committee on the Prevention, Detection Evaluation, and Treatment of High Blood Pressure has identified OSAS as a treatable cause of secondary hypertension.2

OSAS has been correlated with an increased of ocular conditions (Table 2).

Elevated intraocular pressure (IOP) is the most common known risk factor for the development and progression of glaucoma. Other risk factors include a family history of glaucoma, optic disc hemorrhages, and increased corneal deformability. However, the progression of glaucoma can still occur with an IOP within the normal range (normal-tension glaucoma, NTG), attributed currently in large part to factors affecting ocular perfusion, including low nocturnal blood pressure, IOP fluctuation, low intracranial pressure, Flammer syndrome, and OSAS.4 Once regarded as rare, NTG is now known, just like OSAS, to be extremely common, comprising perhaps as many as 30-50% of glaucoma in Caucasians and up to 80 to 89% in Japan and Korea.4

The association of OSAS is greater in patients with NTG. The association of the two increases with age. OSAS is very common in NTG patients in eastern Asia, where obesity rates are much lower than in the West. In one study performed at the Mayo Clinic on 100 patients diagnosed with sleep apnea, 27 were found to have glaucoma.5 A number of publications have shown that patients with OSAS may have not only glaucoma as defined by the presence of visual field damage, but early signs (pre-perimetric glaucoma) including thinning of the retinal nerve fiber layer and electrophysiologic (pattern electroretinography, visual evoked potentials) abnormalities.5

We recommend taking a sleep history on all glaucoma patients and ask about snoring. We check for floppy eye lid syndrome (Figure 1). We suggest that all patients with NTG undergo polysomnography as well as any patients who progress in spite of apparently well-controlled IOP (and we also recommend 24-hour blood pressure monitoring).
measurements), and that all patients with OSAS and no previous eye examination undergo testing to rule out glaucoma. CPAP is important not only for glaucoma, but is associated with improvement of diabetic retinopathy and decreases all-cause mortality.

References

1. West SD, Turnbull C. Obstructive sleep apnoea. Eye (Lond). 2018;32:889-893

Table 1

Systemic Associations of OSAS

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Epilepsy</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
</tr>
<tr>
<td>Impaired sympathetic tone</td>
</tr>
<tr>
<td>Cerebral and coronary vascular disease*</td>
</tr>
<tr>
<td>Congestive heart failure</td>
</tr>
<tr>
<td>Cognitive dysfunction</td>
</tr>
<tr>
<td>Endothelial dysfunction and coagulopathies</td>
</tr>
<tr>
<td>Oxidative and inflammatory stress</td>
</tr>
<tr>
<td>Excessive daytime sleepiness</td>
</tr>
</tbody>
</table>

Table 2

Ocular Associations of OSAS

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-arteritic ischemic optic neuropathy</td>
</tr>
<tr>
<td>Papilledema (idiopathic intracranial hypertension)</td>
</tr>
<tr>
<td>Glaucoma</td>
</tr>
<tr>
<td>Floppy eyelid syndrome</td>
</tr>
<tr>
<td>Blepharitis</td>
</tr>
<tr>
<td>Keratoconus</td>
</tr>
<tr>
<td>Retinal vascular tortuosity</td>
</tr>
<tr>
<td>Diabetic retinopathy (several recent reports)</td>
</tr>
<tr>
<td>Central serous chorioretinopathy</td>
</tr>
<tr>
<td>Ptosis</td>
</tr>
<tr>
<td>Papillary conjunctivitis</td>
</tr>
<tr>
<td>Filamentary keratitis</td>
</tr>
</tbody>
</table>

Figure 1: Figure Legend: Floppy Eyelid Syndrome

Easily inverted lid with papillary conjunctivitis. 90% of patients with FES have OSAS. 31.5% of OSAS pts had FES in one series. Caused by loss of elastin fibers with upregulation of elastolytic proteases in tarsal plates
1 Introduction

Intra-ocular pressure (IOP) is the primary modifiable risk factor that has been linked to glaucoma onset and progression. Interestingly, individuals with low IOP also develop glaucomatous optic neuropathy, while some treated patients continue to progress despite having satisfactory IOP control. It has been postulated that IOP independent factors such as altered optic nerve head microcirculation, oxidative stress, immune mechanisms, and increased trans-laminar stress from low cerebrospinal fluid pressures may play a role in progressive optic neuropathy. However, inadequacies in IOP assessment has also been shown to contribute to this phenomenon.

Like other biological parameters, IOP is a continuous variable: it varies considerably during the circadian cycle and over time. Twenty-four-hour IOP profile studies have shown that two-thirds of patients experienced peak IOP outside regular clinic hours. Diurnal and 24-hour IOP curves have been useful to determine peak IOP levels. Circadian variations can be best assessed by a non-invasive recording of ambulatory, continuous 24-hour IOP monitoring using a contact lens sensor or other telemetric devices. But this is not always feasible or cost-effective in routine clinical practice. The water drinking test (WDT) has been shown to predict peak IOP reasonably reliably in an office setting.

The WDT is a provocative test that was initially developed to differentiate open-angle glaucoma from ocular hypertension patients. However, the WDT lacked the sensitivity and specificity needed to be a reliable screening test. In recent years WDT has attracted attention as an indirect tool to evaluate ocular outflow facility to estimate peak IOP.

2. How to perform WDT

Co-existing systemic diseases, especially cardiac failure or renal dysfunction, or history of urinary retention, are contraindications to this test. The patient is required to liquid fast for two hours before the WDT. After measuring the baseline IOP, the patient drinks a given volume of water (a fixed volume of 800 ml, or 10 ml of water/kg body weight) in 5 minutes; IOP is measured at 15-minute intervals post water consumption.

WDT response allows clinicians to evaluate the efficacy of current IOP lowering interventions for an individual patient and to tailor the treatment plan accordingly.

3. Mechanism of action

The exact mechanism explaining the IOP spike provoked by the WDT has not been established. Studies have suggested that increase in epi-scleral venous pressure, blood-aqueous osmotic pressure gradient, choroidal expansion, and autonomic nerve stimulation may lead to the IOP changes post WDT.

4. Application

WDT plays an important role in the management of glaucoma patients who show functional and/or structural signs of progression despite an apparently well-controlled IOP in the clinic.

1. To identify IOP peaks that correlate with circadian peaks

Peak IOP value is identified as a better predictor of glaucoma progression than average IOP or IOP fluctuation. WDT has shown good correlation and agreement with physiological IOP peaks in circadian cycle. Susanna et al investigated the WDT response in patients with bilateral disease with symmetrical baseline IOP and found that eyes with higher IOP peak have worse visual field damage than their fellow eye.

2. Risk assessment for progression

The WDT peak has been reported to be a strong predictor of progression in treated open angle glaucoma patients, where clinic-based IOP measurements failed to show such significant association. A prospective study found that average peak IOP and percentage of IOP variation during WDT is significantly higher in patients with visual field progression compared with patients who did not progress.

Practical Tips:

IOP assessment with the water drinking test (WDT)

Pushpa Raman MD, MS Ophthal (UM), PICO1 and Colin I Clement MBBS BSc (Hons) PhD FRANZCP FGS2

1Glaucoma Fellow, Sydney Eye Hospital, Sydney Australia
2Staff Specialist, Glaucoma Unit, Sydney Eye Hospital, Sydney Australia

Core Concepts

It is essential to identify both IOP-dependent and non IOP-dependent factors to understand why progression takes place in glaucoma patients with apparently satisfactory IOP control as measured in clinics.

Current 24-hour ambulatory, continuous IOP monitoring devices are not cost-effective.

Surrogate measures such as inter-visit IOP variation or diurnal IOP curves, although helpful, are sometimes impractical.

Water drinking test (WDT) is a feasible, evidence-based alternative measure to determine IOP fluctuation and peak IOP clinically.

Peak WDT-induced IOP correlates well with peak diurnal IOP and may help to identify patients with significant IOP spikes and fluctuations.

The WDT requires the patient to drink a given volume of water (a fixed volume of 800 ml, or 10 ml of water/kg body weight) in 5 minutes; IOP is measured at 15-minute intervals post water consumption.

WDT is a reliable test to identify peak IOP that correlates with peak circadian IOP and to estimate risk of progression in treated glaucoma patients.

WDT response allows clinicians to evaluate the efficacy of current IOP lowering interventions for an individual patient and to tailor the treatment plan accordingly.
3. To detect Impaired trabecular outflow facility

Pseudoexfoliation glaucoma patients showed significant IOP elevation with WDT as compared to those with pseudoxfoliation syndrome alone, indicating impairment in the drainage system with decreased facility of outflow. Primary angle closure patients showed rapid IOP recovery following WDT after peripheral iridectomy, reflecting an improved outflow facility.

4. Evaluation of efficacy of treatment

WDT has been proven its value to evaluate the efficacy of IOP lowering interventions. Brubaker suggested using the WDT as an indirect measurement of the outflow facility to compare the IOP responses of glaucomatous eyes with different drugs. Patients with open-angle glaucoma treated with selective laser trabeculoplasty have demonstrated significantly reduced peak IOPs and fluctuation in IOP in response to the WDT. Subjects who had undergone filtering surgery showed a stable WDT-IOP profile as compared with those on ocular hypotensive drops.

In summary, WDT is an inexpensive, feasible clinical test that is useful to evaluate IOP dependent factors that contribute to glaucoma progression. WDT response allows clinicians to evaluate the efficacy of current IOP lowering treatment and to tailor management accordingly.

References

For each issue 4 CME credits can be obtained by successfully passing the multiple choice test on our website!

In order to maximize the learning effect, participants have the opportunity to register at our website and to answer a number of multiple choice questions for each of the four sections covering the key points of each section. Shortly after test completion, participants receive electronic feedback on successful accomplishment or failure. In case of failure the participant is encouraged to review articles and retake the test. A successful test will earn the participant valuable CME credits needed for their continuous medical education efforts.

ACCREDITATIONS

Individual issues of Glaucoma Now are accredited for Continuing Medical Education (CME) by the Physicians’ Chamber of Baden-Württemberg, Germany (Local Medical Responsible: Andreas Buchholz, MD, PhD, ROpH). This accreditation automatically implies acceptance of credits throughout the European Union and associated countries.

Glaucoma Now is also recognized by the Royal Australian and New Zealand College of Ophthalmologists as a valid Continuing Professional Development activity.

Furthermore the program is recognized by the Brazilian Council of Ophthalmology. Brazilian physicians successfully taking CME tests on our website are automatically awarded CME points by CBO.

STATEMENT OF NEED AND PROGRAM DESCRIPTION

Recent months and years have seen significant advances in our understanding of glaucoma. Much has been learned, not only about damage mechanisms and pathogenesis, but also about diagnosis and management. Treatment options – both medical and surgical – continue to expand. This program will review this new knowledge with an emphasis on incorporating recent insights into day-to-day practice.

Date of original release: December 2020
Approved for a period of 12 months.
This issue is accredited for Continuing Medical Education (CME) by the Physicians’ Chamber of Baden-Württemberg, Germany (Local Medical Responsible: Andreas Buchholz MD, PhD, ROpH)

DISCLAIMER

Participants have an implied responsibility to use newly acquired information to enhance patient outcomes and professional development. The information presented in this activity is not meant to serve as a guideline for patient care. Any procedures, medications, or other courses of diagnosis or treatment discussed or suggested in this activity should not be used by clinicians without evaluation of their patient’s conditions and possible contraindications or dangers in use, applicable manufacturer’s product information, and comparison with recommendations of other authorities.

CONTRIBUTORS

James Brandt MD, PhD is Professor of Ophthalmology & Vision Science, Vice-Chair for International Programs & New Technology at the Tschannen Eye Institute, University California Davis, Sacramento, USA. He has acted as a consultant to Aerie Pharmaceutical, Carl Zeiss Meditec, Laboratoires Thea and Verily (Google) in the past 3 years. He is co-inventor of a microfabricated pressure sensor design (patents are assigned to the Regents of University of California, licensed to Tacsense LLC).

Paul Kaufmann MD PhD is Ernst H. Bárány Professor of Ocular Pharmacology, Department Chair Emeritus at the Department of Ophthalmology & Visual Science, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA. He is a consultant to Aerpio, Allergan Pharm, Applied Genetic Technology Corp, Bausch & Lomb, Chartwell, The Glaucoma Foundation, Layer Bio, Novartis, OIC, Singapore Eye Research Institute, Trinity Partners, Western Glaucoma Foundation and RegenXbio. He has received honoraria from Aerpio, Allergan Pharm, Applied Genetic Technology Corp, Bausch & Lomb, Singapore Eye Research Institute, Trinity Partners and RegenXbio. He has received royalties from Elsevier. Carol A. Rasmussen M.S. is his associate researcher. She has no commercial relationships to disclose.

Robert Ritch, MD, FACS, FARVO is Professor of Ophthalmology and Shelley and Steven Einhorn Distinguished Chair at Einhorn Clinical Research Center, New York Eye and Ear Infirmary, New York, USA. He has no commercial relationships to disclose.

Colin Clement MBBS PhD BSc (Hons) FRANZCO, is glaucoma specialist at the Glaucoma Unit of Sydney Eye Hospital. He is also Clinical Lecturer at Central Clinical School at The University of Sydney, Sydney, Australia. He has no commercial relationships to disclose. Pushpa Raman MD, MS Ophthalm (UM), PICO is Glaucoma Fellow at Sydney Eye Hospital, Sydney Australia. She has no commercial relationship to disclose.

DISCLOSURE STATEMENT

EDITORIAL BOARD

Ivan Goldberg serves on the Faculty and Advisory Boards of the following companies: Alcon, Allergan, Merck and Pfizer.

Remo Susanna served on the Faculty and Advisory Boards of the following companies: Alcon, Allergan, Merck and Pfizer.